#### EDUCATION

## SHANGHAI JIAO TONG UNIVERSITY Ph.D in Applied Mathematics 20

- II. J III Applied Mathematics IS in Physics
- \* MS in Physics
- \* BS in Physics
- hematics  $2020/09 \sim Present$  $2018/09 \sim 2020/06$ 
  - $2013/09 \sim 2017/06$
- Relevant Courses: Numerical Analysis, Inverse Problems, Advanced Statistical Physics, Computational Physics, Biological Physics, Calculus, Linear Algebra, Complex Analysis.

#### PUBLICATIONS

- \* Indicates equal contribution
   Zhong-qi K. Tian\*, Kai Chen\*, Songting Li, David W. McLaughlin, and Douglas Zhou. 2024. "Causal Connectivity Measures for Pulse-Output Network Reconstruction: Analysis and Applications." Proceedings of the National Academy of Sciences 121 (14): e2305297121. https://doi.org/10.1073/pnas.2305297121
- Mei, Jinlong\*, Kai Chen\*, Yanyang Xiao, Songting Li, and Douglas Zhou. "The Asymptotic Behavior of Conditional Granger Causality with Respect to Sampling Interval." (2024). https://doc.global-sci.org/uploads/admin/article\_pdf/20240620/8bbc1503cf83530059ad0dc8402c4be1.pdf
- Kai Chen, Zhong-qi K. Tian, Wei P. Dai, and Songting Li, Douglas Zhou. "Nonlinear Pulse-coupled Network Reconstruction by Pairwise Time-delayed Transfer Entropy." (in preparation)
- Kai Chen, Yuxiu Shao, Songting Li, Douglas Zhou. "Unveiling the Cognitive Computation Using Multi-area RNN with Biological Constraints." (in preparation)
- Kai Chen, Mingzhang Wang, Songting Li, Douglas Zhou. "Detection and Reconstruction of Structural Connectivity Changes in Balanced Spiking Neuronal Networks." (in preparation)
- Bo Wang, Kai Chen, Shouwei Luo, Yanyang Xiao, Songting Li, Douglas Zhou. "Network Reconstruction by Granger Causality for Hodgkin-Huxley Type Models." (in preparation)

#### TALKS († Indicates expected )

- "Linking causal and structural connectivity in pulse-output nonlinear networks."
   @ 7<sup>th</sup> Symposium for Outstanding Ph.D Students in Computational & Applied Mathematics, Peking University, Beijing, China, <u>Nov. 2024</u>
- \* "Quantitative relations among causality measures with applications to pulse-output nonlinear network reconstruction."
   @ SIAM Conference on Applications of Dynamical Systems (DS23), Portland, Oregon, USA, <u>May 2023</u>
   @ The Annual Meeting of the China Society for industrial and Applied Mathematics (CSIAM2022), Online, <u>Nov. 2022</u>
- "Modeling Attentional Modulated Spike Count Correlation in Macaque V1."
   @ 3<sup>rd</sup> Chinese Computational and Cognitive Neuroscience Conference, Online, *Jun. 2021*

#### POSTERS († Indicates expected )

- "Unveiling the cognitive computation using multi-area RNN with biological constraints."
   (a) †22<sup>nd</sup> Annual Computational and Systems Neuroscience (COSYNE), Montreal, Canada, <u>Mar. 2025</u>
- "Nonlinear network reconstruction using pairwise time-delayed transfer entropy."
   @ 4<sup>th</sup> Symposium on Neural Computation and Beyond (SYNCB), Shanghai, China, *Jan. 2025* @ 17<sup>th</sup> Annual Meeting of the Chinese Neuroscience Society, Suzhou, China, *Sep. 2024*
- "Quantitative relations among causality measures with applications to pulse-output nonlinear network reconstruction."
   (a) 10<sup>th</sup> International Congress on Industrial and Applied Mathematics (ICIAM2023), Waseda University, Tokyo, Japan, <u>Aug. 2023</u>
  - @ 16th Annual Meeting of the Chinese Neuroscience Society & 2nd CJK International Meeting, Zhuhai, China, Jul. 2023
  - @ 4th Chinese Computational and Cognitive Neuroscience Conference, Online, Jun. 2022
- "Modeling Attentional Modulated Spike Count Correlation in Macaque V1."
   @ 3rd Chinese Computational and Cognitive Neuroscience Conference, Online, Jun. 2021

#### **RESEARCH EXPERIENCE**

#### "Computational Mechanism of Multitasking Multi-area RNNs"

- Collaborator: Dr. Yuxiu Shao
- Developed an universal training pipeline for biologically constrained multi-area Recurrent Neural Networks (maRNN).
- Revealed the impact of the large-scale connectome structure and the heterogeneity of local circuits (based on macaque data) on the emerging distributed neural representation on 15 commonly studied cognitive tasks.

#### "How Synaptic Configuration Shapes Learning and Memory via Synaptic Plasticity"

Collaborator: Dr. Yuxiu Shao, Prof. Hang Zhou

- Investigated the impact of weight initialization to the trainability and task representation in RNNs, using synaptic configurations experimentally recorded from CA1 neurons as a basis for initialization.
- Explored how synaptic configurations influence the speed and stability of Hebbian-type plasticity based learning in transfer learning scenarios.

#### "Neural Mechanism Underlying Context-dependent Decision-making in Dual-area Low-rank RNNs" 2023/10 ~ 2024/03 Collaborator: Dr. Yuxiu Shao

- Developed a novel supervised-reinforcement hybrid training pipeline to train a *dual-area low-rank recurrent neural network* (DAlrRNN) to perform context-dependent decision-making tasks;
- Demonstrated the heterogeneity of neural dynamics and the emergent contextual representation in DAIrRNNs;
- Developed a set of idealized Bayesian models to characterize the subcategories in the heterogeneous dynamical motifs;



2024/11 ~ present

#### "Comparing Computational Mechanisms for Reservoir Computers and RNNs"

Supervisor: Profs. Songting Li; Douglas Zhou

- Built training and analysis pipelines for Reservoir Computers (RCs) and recurrent neural networks (RNNs) trained on perceptual decision-making task;
- Reverse-engineered well-trained RCs and RNNs to compare population dynamics in state spaces to reveal the differences between them in aspects of their dimensionality and structure of slow neural manifold;
- Extended the training and comparison to scenarios of multitasking, and studied how multitasking shapes the dimensionality and neural manifold of RCs and RNNs.

#### "Causal Connectivity Measures for Pulse-output Network Reconstruction"

Supervisor: Profs. Songting Li; Douglas Zhou; David McLaughlin

- Developed a theory of the mathematical relationships between four commonly used causality measures when they are applied to pulse-output signals of complex nonlinear networks.
- Developed the theoretical foundation of the quantitative relationship between causal connectivity, inferred by the causality measure, and the underlying network structural connectivity;
- Designed an algorithmic framework to reconstruct the structural connectivity of nonlinear pulse-output networks by applying commonly used causality measures;
- Verified the effectiveness of the algorithm and pipelines of reconstruction on various types of neuronal network models and Neuropixel data recorded from the mouse cortex.

#### "Effective Inference of Functional Connectivity from ECoG Data Using TDMI"

Supervisor: Profs. Songting Li; Douglas Zhou

- Developed time-delayed mutual information (TDMI) analysis framework for analyzing neurophysiological (ECoG) data.
- Showed that a strong TDMI inferred signal is highly consistent with anatomical connectivity (structure connectivity) with a high positive prediction correct rate for ECoG data.
- Demonstrated the merit of our TDMI inference framework by comparing our inference performance based on conventional Granger causality and conditional Granger causality.
- Developed banded inference framework for ECoG data.

#### "Modeling Attentional Modulated Spike Count Correlation in Macaque V1"

Supervisor: Profs. Profs. Songting Li; Douglas Zhou

- Built a neural rate model to simulate the effective dynamics in the delayed color-change detection tasks of macaques.
- Fitted the non-monotonic modulations for spike count correlation w.r.t. task difficulty in our model to the experimental data.
- \* Obtained a set of optimized parameters for the structure of the model system with the help of *mean-field theory* analysis.
- Revealed the role of specific top-down inputs towards inhibitory neurons in attentional modulation.
- Built spiking neuronal network (SNN) model to verify prediction got from neural rate model.

#### "Causal Inference of Neuronal Data Based on Time-delayed Mutual Information"

Supervisor: Prof. Douglas Zhou

- Developed time-delayed mutual information (TDMI) analysis between Gaussian random variables.
- \* Revealed the quantitative relation between inferred causality and coupling strength between Gaussian units.
- Designed a pipeline for TDMI estimation between spike train and local field potentials (LFPs) and confirmed its feasibility on causal inference between two types of neuronal signals.
- Determined the relation between interacting strength and the value of mutual information for weakly coupled neurons.
- \* Revealed the different behavior of excitatory and inhibitory neurons in TDMI analysis.
- Determined the feasible network dynamical regime for TDMI analysis.

#### "Study of Network Dynamics Based on Integrate-and-Fire Neuron Model"

Supervisor: Profs. Douglas Zhou; David Cai

- Developed C/C++ code for the simulator of leak integrate-and-fire neuronal networks based on 4<sup>th</sup> Runge-Kutta numerical scheme, and overcame the fire-reset discontinuity to achieve the 4<sup>th</sup> order numerical convergence.
- Simulated dynamics of 'small-world' networks with up to few thousand neurons. Investigated the behavior of network oscillations using rasters and power spectrums as a function of input Poisson parameters.

#### "Coherent Diffraction Imaging of Micro-Scale Samples"

Supervisor: Prof. Dao Xiang

- \* Implemented coherent diffraction imaging (CDI) retrieval algorithm, and tested it with numerical samples;
- Designed and built the optical system for 532nm laser-based CDI. Designed samples and recorded diffraction patterns;
- Optimized the performance of the system, and retrieved the structure of samples with ~2 um spatial resolution;

#### "Femtosecond Pump-probe Spectroscopy (FPPS) of Protein Photosynthesis"

Supervisor: Prof. Stephen Cramer (@UCDavis, CA, US)

- Built and tuned systems of non-colinear optical parametric amplifiers and FPPS for putidaredoxin studies.
- Reconstructed reaction modes based on global analysis simulations with sequential photosynthesis models.

#### Awards

| * | 2025/01 |   | Cosyne New Attendee Travel Grant for COSYNE 2025                                       |
|---|---------|---|----------------------------------------------------------------------------------------|
| * | 2021/07 | Í | Best Poster Award, The 3rd Chinese Computational and Cognitive Neuroscience Conference |
| * | 2017/06 | Í | Outstanding Graduates of Shanghai Jiao Tong University                                 |
| * | 2016/09 | Í | National Scholarship for Undergraduate Students                                        |
| * | 2016/02 | Í | Successful Participant in COMAP's Mathematical Contest in Modeling                     |
| * | 2015/11 | Í | Second Prize in National Mathematical Contest in Modeling                              |
| * | 2015/10 | Í | Champion in Shanghai Mathematical Contest in Modeling                                  |
| * | 2014/09 | Í | Liuyuan Scholarship of Shanghai Jiao Tong University                                   |
| * | 2014/08 | ĺ | Champion in Shanghai Undergraduate Physicists' Tournament                              |

#### 2014/09 ~ 2015/06

2016/08 ~ 2016/09

2016/02 ~ 2017/06

### 2019/12 ~ 2020/12

2021/01 ~ 2021/08

 $2022/12 \sim 2023/06$ 

2021/09 ~ 2023/12

# 2017/07 ~ 2018/12

#### **TEACHING EXPERIENCES**

| 2024/06 ~ 2024/07         | Computational and Cognitive Neuroscience Summer School (TA)  | Cold Spring Harbor Asia          |  |  |  |
|---------------------------|--------------------------------------------------------------|----------------------------------|--|--|--|
| 2022/08 ~ 2022/08         | CNeuro 2022 (TA)                                             | Beijing, China/Basel Switzerland |  |  |  |
| 2022/03 ~ 2022/06         | Probability and Statistics (TA)                              | Shanghai Jiao Tong University    |  |  |  |
| 2021/09 ~ 2025/01         | Linear Algebra (TA) [4 times]                                | Shanghai Jiao Tong University    |  |  |  |
| $2021/07 \sim 2021/08$    | Neuromatch Academy - Computational Neuroscience (Lead TA)    | Asia Time-slot                   |  |  |  |
| 2021/01 ~ 2023/01         | Computational Neuroscience Winter School (TA) [2 times]      | Shanghai Jiao Tong University    |  |  |  |
| $2020/07 \sim 2020/08$    | Neuromatch Academy - Computational Neuroscience (TA)         | Asia Time-slot                   |  |  |  |
| 2019/09 ~ 2021/01         | Advanced Topics in Computational Neuroscience (TA) [2 times] | Shanghai Jiao Tong University    |  |  |  |
| 2018/09 ~ 2019/06         | College Physics (TA) [2 times]                               | Shanghai Jiao Tong University    |  |  |  |
| SUMMER SCHOOL EXPERIENCES |                                                              |                                  |  |  |  |

| 2018/01 ~ 2023/01 Computational Neuroscience whiter School [7 times] Shanghai Jiao Tong University |  | 2023/07 ~ 2023/07<br>2021/08 ~ 2021/08<br>2019/07 ~ 2019/07<br>2018/01 ~ 2025/01 | Computational and Cognitive Neuroscience Summer School<br>CNeuro 2021<br>CNeuro 2019 (Auditing student)<br>Computational Neuroscience Winter School [7 times] | Cold Spring Harbor Asia<br>Tsinghua University, Beijing, China<br>Tsinghua University, Beijing, China<br>Shanghai Jiao Tong University |
|----------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|

#### SKILLS AND SPECIALISTS

Coding:

- Python (efficient RNN/ANN training and data analysis, experienced user of PyTorch, Jax/Flax, scikit-learn, neurogym, etc.)
- C/C++ (fast simulator for spiking neuronal networks)
- Shell (regular maintenance of high performance computing servers/clusters)
- MATLAB/Octave (Data analysis)

• LaTeX

Hobbies: Chinese Calligraphy; Chinese Flute; Weightlifting; Road Cycling; Rock Climbing.