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Supporting Information Text14

1. Mathematical derivation of relations among four causality measures15

We first derive the mathematical relations among time-delayed correlation coefficient (TDCC), time-delayed mutual information16

(TDMI), Granger causality (GC), and transfer entropy (TE) for networks with pulse signals as measured output. Consider a17

pair of nodes in a network, say nodes X and Y with pulse-output signals wx(t) =
∑

l
δ(t − τxl) and wy(t) =

∑
l
δ(t − τyl),18

where δ(·) is the Dirac delta function. Under a sampling resolution ∆t, the pulse-output signals are measured as binary time19

series {xn} and {yn}, where xn = 1 (yn = 1) if there is a pulse signal of X (Y ) in the time window [tn, tn+1), and xn = 020

(yn = 0) otherwise, i.e.,21

xn =
∫ tn+1

tn

wx(t)dt and yn =
∫ tn+1

tn

wy(t)dt,22

and tn = n∆t. Note that the value of ∆t is chosen to be small to make sure that there is at most one pulse signal in one time23

window. The responses xn and yn are viewed as stochastic processes, as they are when the network is driven by stationary24

stochastic inputs. Accordingly, below we will describe the neuronal responses probabilistically.25

For the ease of discussion, we define the following notations:26

rx = 1
T

∫ T

0
wx(t)dt and ry = 1

T

∫ T

0
wy(t)dt27

are the mean pulse rates of X and Y , respectively;28

px = p(xn = 1) and py = p(yn = 1)29

are the probability of xn and yn being 1, respectively. Then we have30

px = rx∆t = O(∆t), py = ry∆t = O(∆t) [1]31

and32

σ2
x = px − p2

x = O(∆t), σ2
y = py − p2

y = O(∆t),33

where the symbol “O” stands for the order, σx and σy are the standard deviation of {xn} and {yn}, respectively. Also, we34

define ∆p(xn, yn−m) measuring the dependence between xn being ξ and yn−m being η by35

∆p(xn = ξ, yn−m = η) = p(xn = ξ, yn−m = η)
p(xn = ξ)p(yn−m = η) − 1. [2]36

Specially, we denote the dependence between xn and yn−m being 1 by37

∆pm = ∆p(xn = 1, yn−m = 1) = p(xn = 1, yn−m = 1)
p(xn = 1)p(yn−m = 1) − 1. [3]38

A. Definition of TDCC, TDMI, GC, and TE. Without loss of generality, we consider the causal interaction from Y to X with39

binary time series {xn} and {yn}. TDCC from Y to X is defined by40

C(X, Y ; m) = cov(xn, yn−m)
σxσy

, [4]41

where m > 0 is the time delay.42

TDMI from Y to X is defined by43

I(X, Y ; m) =
∑

xn,yn−m

p(xn, yn−m) log p(xn, yn−m)
p(xn)p(yn−m) ,44

where p(xn, yn−m) is the joint probability distribution of xn and yn−m, p(xn) and p(yn−m) are the corresponding marginal45

probability distributions.46

GC is established based on linear regression. The auto-regression for X is represented by47

xn+1 = a0 +
k∑

i=1

aixn+1−i + ϵn+1,48

where {ai} are the auto-regression coefficients and ϵn+1 is the residual. By including the historical information of Y with49

message length l and time delay m, the joint regression for X is represented by50

xn+1 = ã0 +
k∑

i=1

ãixn+1−i +
l∑

j=1

b̃jyn+2−m−j + ηn+1,51
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where {ãi} and {b̃j} are the joint regression coefficients, and ηn+1 is the corresponding residual. The GC value from Y to X is52

defined by53

GY →X(k, l; m) = log Var(ϵn+1)
Var(ηn+1) .54

By introducing the time-delay parameter m, the GC analysis defined above generalizes the conventional GC analysis, as the55

latter corresponds to the special case of m = 1.56

The TE value from Y to X is defined by57

TY →X(k, l; m) =
∑

xn+1,x
(k)
n ,y

(l)
n+1−m

p(xn+1, x(k)
n , y

(l)
n+1−m) log

p(xn+1|x(k)
n , y

(l)
n+1−m)

p(xn+1|x(k)
n )

, [5]58

where the shorthand notation x
(k)
n = (xn, xn−1, ..., xn−k+1) and y

(l)
n+1−m = (yn+1−m, yn−m, ..., yn+2−m−l), k, l indicate the59

length (order) of historical information of X and Y , respectively. Similar to GC, the time-delay parameter m is introduced60

that generalizes the conventional TE, the latter of which corresponds to the case of m = 1.61

B. Mathematical relation between TDMI and TDCC. From the definition of TDCC in Eq. 4, for binary value time series {xn}62

and {yn−m}, we have63

C(X, Y ; m) = cov(xn, yn−m)
σxσy

= E[(xn − E[xn])(yn−m − E[yn−m])]√
px(1− px)

√
py(1− py)

= E[(xn − px)(yn−m − py)]√
px(1− px)

√
py(1− py)

= p(xn = 1, yn−m = 1)− pxpy√
(px − p2

x)(py − p2
y)

.

[6]64

The relation between TDMI and TDCC can be derived by Taylor expanding TDMI with respect to ∆p(xn, yn−m), defined in65

Eq. 2, as follows:66

I(X, Y ; m) =
∑

xn,yn−m

p(xn)p(yn−m)
[

1 +
(

p(xn, yn−m)
p(xn)p(yn−m) − 1

)]
log
[

1 +
(

p(xn, yn−m)
p(xn)p(yn−m) − 1

)]
=

∑
ξ,η∈{0,1}

p(xn = ξ)p(yn−m = η) [1 + ∆p(xn = ξ, yn−m = η)] log [1 + ∆p(xn = ξ, yn−m = η)]

=
∑

ξ,η∈{0,1}

p(xn = ξ)p(yn−m = η)
[
∆p(xn = ξ, yn−m = η) + 1

2∆p2(xn = ξ, yn−m = η)

+O
(
∆p3(xn = ξ, yn−m = η)

)]
[7]67

Due to the simplicity of binary value series, the summation in Eq. 7 contains only four terms. We list the expression of68

∆p(xn, yn−m) for all possible ξ and η values in Table S1 in terms of ∆pm, defined by Eq. 3.69

∆p(xn, yn−m) xn = 0 xn = 1

yn−m = 0
pxpy∆pm

(1 − px)(1 − py)
−

pxpy∆pm

px(1 − py)

yn−m = 1 −
pxpy∆pm

(1 − px)py
∆pm

Table S1. Expressions of ∆p(xn, yn−m) in terms of ∆pm.

Then, we substitute all four terms of ∆p(xn, yn−m) in Eq. 7 to obtain70

I(X, Y ; m) = [p(xn = 1, yn−m = 1)− pxpy]2

2(px − p2
x)(py − p2

y) + O(∆t2∆p3
m)

= C2(X, Y ; m)
2 + O(∆t2∆p3

m).
[8]71
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C. Mathematical relation between GC and TDCC. From the definition, GC can be represented by the covariances of the signals72

as (1)73

GY →X(k, l; m) = log Γ(xn+1|x(k)
n )

Γ(xn+1|x(k)
n ⊕ y

(l)
n+1−m)

, [9]74

where Γ(x|y) = cov(x)− cov(x, y)cov(y)−1cov(x, y)T for random vectors x and y, cov(x) and cov(y) denote the covariance75

matrix of x and y, respectively, and cov(x, y) denotes the cross-covariance matrix between x and y. The symbol T is the76

transpose operator and ⊕ denotes the concatenation of vectors.77

To derive the relation between GC and TDCC, we first consider the auto-correlation function (ACF) of the binary time78

series {xn} and {yn}. The ACF of {xn} is defined as79

ACF(X; m) = cov(xn, xn−m)
σ2

x
,80

where m is the non-zero time delay. Let gx(t) be the probability density function that node X will generate a pulse at time t81

given that it produced a pulse at time t = 0. Then we have82

p(xn = 1|xn−m = 1) = gx(m∆t)∆t + O(∆t2).83

In general, the function gx(t) is continuous and bounded, thus we have p(xn = 1|xn−m = 1) = O(∆t). Together with Eq. 1, we84

can obtain85

ACF(X; m) = p(xn = 1|xn−m = 1)− px

1− px
= O(∆t). [10]86

Similarly, we have87

ACF(Y ; m) = O(∆t).88

Based on this, we derive the relation between GC and TDCC as follows: from Eq. 10, we can obtain89

cov(x(k)
n ) = σ2

x(I + Â),90

cov(x(k)
n )−1 = 1

σ2
x

(I− Â) + O(∆t1k×k),91

where Â = (âij), âij = O(∆t). Note that σ2
x = O(∆t), thus the order with respect to ∆t in first term of the covariance matrix92

is up to O(1). Besides, I is the identity matrix, and 1k×k is the all-one matrix. Thus,93

Γ(xn+1|x(k)
n ) = σ2

x −
1

σ2
x

cov(xn+1, x(k)
n )(I− Â)cov(xn+1, x(k)

n )T + O(∆t5). [11]94

In the same way, we have95

cov(x(k)
n ⊕ y

(l)
n+1−m) =

(
σ2

x(I + Â) σxσyĈ
σxσyĈT σ2

y(I + B̂)

)
,96

cov(x(k)
n ⊕ y

(l)
n+1−m)−1 =

(
(I− Â)/σ2

x −Ĉ/σxσy

−ĈT /σxσy (I− B̂)/σ2
y

)
+ O

(
∆t1(k+l)×(k+l)

)
,97

where B̂ = (b̂ij), b̂ij = O(∆t), Ĉ = (ĉij), ĉij = O(∆t∆pm). Similarly since σ2
x and σ2

y is O(∆t), the first term of the inverse of98

covariance matrix is O(1) with respect to ∆t. Thus,99

Γ(xn+1|x(k)
n ⊕ y

(l)
n+1−m) =σ2

x −
1

σ2
x

cov(xn+1, x(k)
n )(I− Â) cov(xn+1, x(k)

n )T

− 1
σ2

y
cov(xn+1, y

(l)
n+1−m)(I− B̂) cov(xn+1, y

(l)
n+1−m)T

+ 2
σxσy

cov(xn+1, x(k)
n )Ĉ cov(xn+1, y

(l)
n+1−m)T + O(∆t5).

[12]100

Substituting Eqs. 11 and 12 into Eq. 9 and Taylor expanding Eq. 9 with respect to ∆t, we can obtain101

GY →X(k, l; m) =
cov(xn+1, y

(l)
n+1−m) cov(xn+1, y

(l)
n+1−m)T

σ2
xσ2

y

− 1
σ2

xσ2
y

[
cov(xn+1, y

(l)
n+1−m)B̂ cov(xn+1, y

(l)
n+1−m)T + 2σy

σx
cov(xn+1, x(k)

n )Ĉ cov(xn+1, y
(l)
n+1−m)T

]
︸ ︷︷ ︸

O(∆t3∆p2
m)

+ O(∆t4∆p4
m)

[13]102
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Note that the first term in Eq. 13 is the cross correlation between xn+1 and y
(1)
n+1−m, thus, by dropping the higher order term103

O(∆t4), we have104

GY →X(k, l; m) =
m+l−1∑

i=m

C2(X, Y ; i) + O(∆t3∆p2
m). [14]105

D. Mathematical relation between TE and TDMI. To rigorously establish the relation between TE and TDMI, we require that106 ∥∥∥x
(k+1)
n+1

∥∥∥
0
≤ 1 and

∥∥∥y
(l)
n+1−m

∥∥∥
0
≤ 1 in the definition of TE given in Eq. 5, where

∥∥∥·∥∥∥
0

denotes the l0 norm of a vector, i.e., the107

number of nonzero elements in a vector. This assumption indicates that the length of historical information used in the TE108

framework is shorter than the “refractory period”, i.e., the minimal time interval between two consecutive pulse-output signals.109

For simplify, we use x−and y− to denote x
(k)
n = (xn, xn−1, · · · , xn−k+1) and y

(l)
n+1−m = (yn+1−m, yn−m, · · · , yn+2−m−l),110

respectively. From the definition of TE, we have111

TY →X(k, l; m) =
∑

xn+1,x−,y−

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|x−)

=
∑

xn+1,x−,y−

p(xn+1, x−, y−)
[

log p(xn+1|y−)
p(xn+1) + log p(xn+1|x−, y−)

p(xn+1|y−)
p(xn+1)

p(xn+1|x−)

]
.

112

Because113 ∑
xn+1,y−

p(xn+1, y−) log p(xn+1|y−)
p(xn+1) =

∑
xn+1,y−

p(xn+1, y−) log p(y−|xn+1)
p(y−)

=
∑

xn+1,y−

p(xn+1, y−)
[

log
∏

j
p(yj |xn+1)∏

j
p(yj)

+ log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)

]

=
m+l−1∑

i=m

I(X, Y ; i) +
∑

xn+1,y−

p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−) ,

114

where
∏

j
represents

∏n+1−m

j=n+2−m−l
, we have115

TY →X(k, l; m) =
m+l−1∑

i=m

I(X, Y ; i) +A+ B, [15]116

where117

A =
∑

xn+1,y−

p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)118

and119

B =
∑

xn+1,x−,y−

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

p(xn+1)
p(xn+1|x−) .120

Under the assumption that
∥∥∥x

(k+1)
n+1

∥∥∥
0
≤ 1 and

∥∥∥y
(l)
n+1−m

∥∥∥
0
≤ 1, the number of nonzero components is at most one in x

(k+1)
n+1121

and y
(l)
n+1−m. We use 1xs to denote the event that only the state xs is one in x−, where n − k + 1 ≤ s ≤ n, and use 0−

x to122

denote the event that all the components in x− are zero. Similarly, we use 1yt to denote the event that only the state yt is one123

in y−, where n + 2−m− l ≤ t ≤ n + 1−m, and use 0−
y to denote the event that all the components in y− are zero. Then we124

can derive the leading order of each term in A and B by Taylor expanding them with respect to ∆t and ∆pm.125

In A, we define the dependence between xn+1 and y−, similarly as in Eqs. 2 and 3, by126

∆p(xn+1, y−) = p(xn+1, y−)
p(xn+1)p(y−) − 1.127

And more specifically, we define128

∆pn+1−t = ∆p(xn+1 = 1, y− = 1yt ) = p(xn+1 = 1, y− = 1yt )
p(xn+1 = 1)p(y− = 1yt ) − 1, [16]129

where n + 2−m− l ≤ t ≤ n + 1−m. Then, we can construct the table of p(xn+1, y−) in terms of ∆pn+1−t, shown in Table S2.130
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p(xn+1, y−) xn+1 = 0 xn+1 = 1

y− = 0−
y 1 − px − lpy + pxpy

(
l +

n−m+1∑
t=n+2−m−l

∆pn+1−t

)
px − pxpy

(
l +

n−m+1∑
t=n+2−m−l

∆pn+1−t

)
y− = 1yt

py − pxpy (1 + ∆pn+1−t) pxpy∆pn+1−t

Table S2. Expressions of p(xn+1, y−) in terms of ∆pn+1−t, where n + 2 − m − l ≤ t ≤ n + 1 − m.

For the terms in A of which xn+1 = 1 and y− = 1yt ,131

p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)

∣∣∣∣
xn+1=1,y−=1yt

[17]132

where
∏

j
represents

∏n+1−m

j=n+2−m−l
, we have133

p(xn+1 = 1, yt = 1) = p(xn+1 = 1, y− = 1yt ) = pxpy(1 + ∆pn+1−t), [18]134

p(yj = 0|xn+1 = 1) = p(xn+1 = 1, yj = 0)
p(xn+1 = 1) = px − p(xn+1 = 1, yj = 1)

px
= 1− py(1 + ∆pn+1−j). [19]135

Substituting Eqs. 18-19 and corresponding entries in Table S2 into Eq. 17 yields136

p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)

∣∣∣∣
xn+1=1,y−=1yt

= pxpy(1 + ∆pn+1−t) log (1− py)l−1∏
j ̸=t

(1− py − py∆pn+1−j)

= pxpy(1 + ∆pn+1−t)
∑
j ̸=t

log 1− py

1− py − py∆pn+1−j

= pxp2
y

∑
j ̸=t

∆pn+1−j +pxp2
y∆pn+1−t

∑
j ̸=t

∆pn+1−j︸ ︷︷ ︸
O(∆t3∆p2

m)

+O(∆t4∆p2
m)

= pxp2
y

∑
j ̸=t

∆pn+1−j + O(∆t3∆p2
m).

[20]137

Note that we take ∆pn+1−j = O(∆pm) in the above derivation. Other terms in A can be obtained similarly as follows:138

p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)

∣∣∣∣
xn+1=1,y−=0−

y

=

(
px − pxpy(l +

∑
t

∆pn+1−t)

)
log

1− py(l +
∑

t
∆pn+1−t)∏

t
(1− py − py∆pn+1−t)

(1− py)l

1− lpy

= (1− l)pxp2
y

∑
t

∆pn+1−t +1
2pxp2

y

[∑
j

∆p2
n+1−j −

(∑
j

∆pn+1−j

)2]
︸ ︷︷ ︸

O(∆t3∆p2
m)

+O(∆t4),

[21]139

p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)

∣∣∣∣
xn+1=0,y−=1yt

= (py − pxpy(1 + ∆pn+1−t)) log (1− py)l−1(1− px)l−1∏
j ̸=t

(1− px − py + pxpy(1 + ∆pn+1−j))

= −pxp2
y

∑
j ̸=t

∆pn+1−j + O(∆t4),

[22]140
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p(xn+1, y−) log p(y−|xn+1)∏
j

p(yj |xn+1)

∏
j

p(yj)
p(y−)

∣∣∣∣
xn+1=0,y−=0−

y

=

(
1− px − lpy + pxpy(l +

∑
t

∆pn+1−t)

)
log

1− px − lpy + pxpy(l +
∑

t
∆pn+1−t)∏

t
(1− px − py + pxpy(1 + ∆pn+1−t))

(1− py)l(1− px)l

(1− lpy)(1− px)

= (l − 1)pxp2
y

∑
t

∆pn+1−t + O(∆t4).

[23]141

Therefore, combining Eqs. 20-23, we obtain A = O(∆t3∆p2
m).142

For143

B =
∑

xn+1,x−

p(xn+1, x−) log p(xn+1)
p(xn+1|x−) +

∑
xn+1,x−,y−

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−) , [24]144

the first term is the negative mutual information between xn+1 and x−. With the
∥∥∥x

(k+1)
n

∥∥∥
0
≤ 1 assumption in Theorem 3,145

we write down the joint probability distribution in Table S3,146

p(xn+1, x−) xn+1 = 0 xn+1 = 1

x− = 0−
x 1 − (1 + k)px px

x− = 1xs
px 0

Table S3. Expressions of p(xn+1, x−) in terms of px, where n − k + 1 ≤ s ≤ n.

And we can estimate the order of the first term by147

∑
xn+1,x−

p(xn+1, x−) log p(xn+1)
p(xn+1|x−)

= (1− (k + 1)px) log (1− px)(1− kpx)
1− (k + 1)px

+ px log(1− kpx) +
∑

s

px log(1− px)

= (1− (k + 1)px) log
(

1 + kp2
x

1− (k + 1)px

)
+ px log(1− kpx) + kpx log(1− px)

= −kp2
x −

k(k + 1)
2 p3

x + O(∆t4).

[25]148

For the second term in Eq. 24, we consider the joint probability distribution p(xn+1, x−, y−), and we define the dependence149

∆p(xn+1, x−, y−) by150

∆p(xn+1, x−, y−) = p(xn+1, x−, y−)
p(xn+1)p(x−, y−) − 1. [26]151

More specifically,152

∆pn+1−t = ∆p(xn+1 = 1, x− = 0−
x , y− = 1yt ) = p(xn+1 = 1, x− = 0−

x , y− = 1yt )
p(xn+1 = 1, x− = 0−

x )p(y− = 1yt )
− 1

= p(xn+1 = 1, x− = 0−
x , y− = 1yt )

pxpy
− 1,

153

154

∆ps−t = ∆p(xn+1 = 0, x− = 1xs , y− = 1yt ) = p(xn+1 = 0, x− = 1xs , y− = 1yt )
p(xn+1 = 0, x− = 1xs )p(y− = 1yt ) − 1

= p(xn+1 = 0, x− = 1xs , y− = 1yt )
pxpy

− 1.

155

Then, we deduce the joint probability distribution p(xn+1, x−, y−) in terms of ∆pn+1−t and ∆ps−t as shown in Tables S4-S5.156
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p(xn+1, x− = 0−
x , y−) xn+1 = 0 xn+1 = 1

y− = 0−
y 1 − (1 + k)px − lpy + pxpy

(
(1 + k)l +

∑
t

∆pn+1−t +
∑
s,t

ps−t

)
px − pxpy

(
l +
∑

t

∆pn+1−t

)
y− = 1yt

py − pxpy

(
1 + ∆pn+1−t + k +

∑
s

ps−t

)
pxpy (1 + ∆pn+1−t)

Table S4. Expressions of p(xn+1, x− = 0−
x , y−) in terms of ∆ps−t and ∆pn+1−t, where n − k + 1 ≤ s ≤ n and n + 2 − m − l ≤ t ≤ n + 1 − m.

p(xn+1, x− = 1xs
, y−) xn+1 = 0 xn+1 = 1

y− = 0−
y px − pxpy

(
l +
∑

t

∆ps−t

)
0

y− = 1yt
pxpy (1 + ∆ps−t) 0

Table S5. Expressions of p(xn+1, x− = 1xs , y−) in terms of ∆ps−t and ∆pn+1−t, where n − k + 1 ≤ s ≤ n and n + 2 − m − l ≤ t ≤ n + 1 − m.

Finally, we write down all different types of terms in B, with the help of tables above,157

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

∣∣∣∣
xn+1=1,x−=0−

x ,y−=1yt

= −pxpy(1 + ∆pn+1−t) log

(
1− px(k +

∑
s

∆ps−t)

)

= p2
xpy(k + k∆pn+1−t +

∑
s

∆ps−t) +p2
xpy∆pn+1−t

(∑
s

∆ps−t

)
︸ ︷︷ ︸

O(∆t3∆p2
m)

+O(∆t4),

[27]158

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

∣∣∣∣
xn+1=1,x−=0−

x ,y−=0−
y

=

(
px − pxpy(l +

∑
t

∆pn+1−t)

)
log (1− lpy)

1− kpx − lpy + pxpy(kl +
∑

s,t
∆ps−t)

= kp2
x + k2p3

x

2 − p2
xpy(kl +

∑
s,t

∆ps−t + k
∑

t

∆pn+1−t) + O(∆t4),

[28]159

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

∣∣∣∣
xn+1=0,x−=1xs ,y−=1yt

= −pxpy(1 + ∆ps−t) log (1− px(1 + ∆pn+1−t))
= p2

xpy(1 + ∆ps−t + ∆pn+1−t) +p2
xpy∆ps−tpn+1−t︸ ︷︷ ︸

O(∆t3∆p2
m)

+O(∆t4),
[29]160

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

∣∣∣∣
xn+1=0,x−=1xs ,y−=0−

y

=

(
px − pxpy(l +

∑
t

∆ps−t)

)
log 1− lpy

1− px − lpy + pxpy(l +
∑

t
∆pn+1−t)

= p2
x + p3

x

2 − p2
xpy(l +

∑
t

∆pn+1−t +
∑

t

∆ps−t) + O(∆t4),

[30]161
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p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

∣∣∣∣
xn+1=0,x−=0−

x ,y−=1yt

=

(
py − pxpy(k + 1 + ∆pn+1−t +

∑
s

∆ps−t)

)
log

1− px(k + 1 + ∆pn+1−t +
∑

s
∆ps−t)(

1− px(k +
∑

s
∆ps−t)

)
(1− px(1 + ∆pn+1−t))

= −p2
xpy(k +

∑
s

∆ps−t + k∆pn+1−t)−p2
xpy∆pn+1−t

∑
s

∆ps−t︸ ︷︷ ︸
O(∆t3∆p2

m)

+O(∆t5),

[31]162

p(xn+1, x−, y−) log p(xn+1|x−, y−)
p(xn+1|y−)

∣∣∣∣
xn+1=0,x−=0−

x ,y−=0−
y

=

(
1− (k + 1)px − lpy + pxpy(kl + l +

∑
s,t

∆ps−t +
∑

t

∆pn+1−t)

)

· log
[1− (k + 1)px − lpy + pxpy(kl + l +

∑
s,t

∆ps−t +
∑

t
∆pn+1−t)

1− kpx − lpy + pxpy(kl +
∑

s,t
∆ps−t)

· 1− lpy

1− px − lpy + pxpy(l +
∑

t
∆pn+1−t)

]
= −kp2

x + p2
xpy(kl + k

∑
t

∆pn+1−t +
∑
s,t

∆ps−t) + O(∆t4).

[32]163

Therefore, combining Eqs. 25 and 27-32, B = O(∆t3∆p2
m), and thus we can obtain164

TY →X(k, l; m) =
m+l−1∑

i=m

I(X, Y ; i) + O(∆t3∆p2
m). [33]165

Note that we omit higher order terms O(∆t4) in the above derivation.166

E. Mathematical relation between GC and TE. From Eqs. 8, 14, and 33, we can straightforwardly obtain the following relation167

between GC and TE168

GY →X(k, l; m) = 2TY →X(k, l; m) + O
(
∆t2∆p3

m

)
+ O

(
∆t3∆p2

m

)
,169

where TY →X is defined in Eq. 5 with the assumption that
∥∥∥x

(k+1)
n+1

∥∥∥
0
≤ 1 and

∥∥∥y
(l)
n+1−m

∥∥∥
0
≤ 1. Next, we will prove that170

O
(
∆t3∆p2

m

)
= 0. We collect all the terms with order O

(
∆t3∆p2

m

)
from Eqs. 13, 20, 20, 27, 29, 30, and derive that171

O
(
∆t3∆p2

m

)
=− 1

σ2
xσ2

y

[
cov(xn+1, y

(l)
n+1−m)B̂ cov(xn+1, y

(l)
n+1−m)T + 2σy

σx
cov(xn+1, x(k)

n )Ĉ cov(xn+1, y
(l)
n+1−m)T

]
− 2

{
pxp2

y

∑
t

(
∆pn+1−t

∑
t′ ̸=t

∆pn+1−t′

)
+ 1

2pxp2
y

[∑
t

∆p2
n+1−t −

(∑
t

∆pn+1−t

)2]

+p2
xpy

∑
t

[
∆pn+1−t

∑
s

∆ps−t

]
+ p2

xpy

(∑
s,t

∆ps−t∆pn+1−t

)
− p2

xpy

∑
t

[
∆pn+1−t

∑
s

∆ps−t

]}
=− 1

σ2
xσ2

y

[
cov(xn+1, y

(l)
n+1−m)B̂ cov(xn+1, y

(l)
n+1−m)T + 2σy

σx
cov(xn+1, x(k)

n )Ĉ cov(xn+1, y
(l)
n+1−m)T

]
− pxp2

y

[(
n+2−m−l∑
t=n+1−m

∆pn+1−t

)2

−
n+2−m−l∑
t=n+1−m

∆p2
n+1−t

]
− 2p2

xpy

(
n−k+1∑

s=n

n+2−m−l∑
t=n+1−m

∆ps−t∆pn+1−t

)
,

[34]172

With the assumption that
∥∥∥x

(k+1)
n+1

∥∥∥
0
≤ 1 and

∥∥∥y
(l)
n+1−m

∥∥∥
0
≤ 1, components in the first term of Eq. 34 can be rewritten by173

functions of px, py, ∆pn+1−t, and ∆ps−t as follows174

cov(xn+1, y
(l)
n+1−m) = pxpy

[
∆pn+1−(n−m), ∆pn+1−(n−m−1), · · · , ∆pn+1−(n−m−l+2)

]
175

176

B̂ =
p2

y

σ2
y

(Il×l − 1l×l)177
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178

cov(xn+1, x(k)
n ) = −p2

x11×k179
180

Ĉ = pxpy

σxσy



∆p(n)−(n−m) ∆p(n)−(n−m−1) · · · ∆p(n)−(n−m−l+2)

∆p(n−1)−(n−m) ∆p(n−1)−(n−m−1) · · · ∆p(n−1)−(n−m−l+2)

...
...

. . .
...

∆p(n−k+1)−(n−m) ∆p(n−k+1)−(n−m−1) · · · ∆p(n−k+1)−(n−m−l+2)


.181

Substituting expressions above into the first term in Eq. 34, we obtain182

O
(
∆t3∆p2

m

)
=

p2
xp4

y

σ2
xσ4

y

(
n+2−m−l∑
t=n+1−m

n+2−m−l∑
t′=n+1−m

∆pn+1−t∆pn+1−t′ −
n+2−m−l∑
t=n+1−m

∆p2
n+1−t

)
+ 2

p4
xp2

y

σ4
xσ2

y

n−k+1∑
s=n

n+2−m−l∑
t=n+1−m

∆ps−t∆pn+1−t

− pxp2
y

[(
n+2−m−l∑
t=n+1−m

∆pn+1−t

)2

−
n+2−m−l∑
t=n+1−m

∆p2
n+1−t

]
− 2p2

xpy

(
n−k+1∑

s=n

n+2−m−l∑
t=n+1−m

∆ps−t∆pn+1−t

)
= 0.

183

Note that we omit higher order terms O(∆t4) in the above derivation. Therefore, we prove the Theorem 4 that184

GY →X(k, l; m) = 2TY →X(k, l; m) + O
(
∆t2∆p3

m

)
. [35]185

2. Another version of mathematical relations among four causality measures for the strong inhibition scenario186

If the pre-synaptic neuron Y strongly inhibits the post-synaptic neuron X, i.e., the post-synaptic neuron cannot fire an action187

potential within a certain time window after pre-synaptic spike events, the joint probability p(xn = 1, yn−m = 1) estimated188

from the spike-train data will be almost zero. Thus, this strong inhibition scenario will make ∆pm ≈ −1, which will violate189

the condition of Taylor expansion with respect to small ∆pm in derivations of Theorem 1 to 4. Here we focus on this case of190

∆pm = −1, and introduce another version of mathematical relation. First, similar to Theorem 1, we rewrite the Table S1 of191

∆p(xn, yn−m) by substitute ∆pm = −1.192

∆p(xn, yn−m) xn = 0 xn = 1

yn−m = 0 −
pxpy

(1 − px)(1 − py)
py

1 − py

yn−m = 1
px

1 − px
−1

Table S6. Expressions of ∆p(xn, yn−m) in terms of px and py when ∆pm = −1.

Then, following Eq. 7, we write down the full expression of TDMI as a function of px, py and ∆p(xn, yn−m),193

194

I(X, Y ; m) =
∑

xn,yn−m

p(xn)p(yn−m)
[

1 +
(

p(xn, yn−m)
p(xn)p(yn−m) − 1

)]
log
[

1 +
(

p(xn, yn−m)
p(xn)p(yn−m) − 1

)]
=

∑
ξ,η∈{0,1}

p(xn = ξ)p(yn−m = η) [1 + ∆p(xn = ξ, yn−m = η)] log [1 + ∆p(xn = ξ, yn−m = η)]

=(1− px − py) log
(

1− pxpy

(1− px)(1− py)

)
+ px log

(
1 + py

1− py

)
+ py log

(
1 + px

1− px

)
.

195

196

Note that px = rx∆t, py = ry∆t, where rx and ry are the firing rate of neuron Y and X. We can expand the expression197

above with respect to ∆t by198

199

I(X, Y ; m) = pxpy

(1− px)(1− py) + O(∆t3),200

and drop the small residues with order higher than O(∆t3). On the other hand, according to Eq. 6, the TDCC can be expressed201

by202
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203

C(X, Y ; m) = −pxpy√
(px − p2

x)(py − p2
y)

.204

205

Thus, we have another version of Theorem 1,206

I(X, Y ; m) = C2(X, Y ; m) + O(∆t3).207

208

To numerically verify this new relation, we simulate large excitation-inhibition balanced leaky integrate-and-fire neuronal209

network and this new relation is valid for the neuronal pairs with ∆pm ≈ −1, as shown in Fig. S18A. And also based on this210

numerical observation, we can have the following three relations as the modified version of Theorem 2 to 4.211

212

GY →X(k, l; m) =
m+l−1∑

i=m

C2(X, Y ; i) + O(∆t3).213

214

215

TY →X(k, l; m) =
m+l−1∑

i=m

I(X, Y ; i) + O(∆t3).216

217

218

GY →X(k, l; m) = TY →X(k, l; m) + O(∆t3).219

220

We emphasize that the successful network reconstructions are preserved for such large E-I balanced networks (see Figs. S17221

and S18B) for the ∆pm ≈ −1 case.222

3. Mechanism underlying successful network reconstruction using pairwise causal inference223

Here we demonstrate the validity of pairwise inference on pulse-output signals in the reconstruction of network structural224

connectivity. As in the main text, we define a d-conn (directly connected) (Y, X) pair for two neurons Y and X when neuron225

Y synapses onto neuron X, i.e., Y → X. Otherwise, they are termed id-conn (indirectly connected) (Y, X) pair. It has been226

noticed that pairwise causal inference may potentially fail to distinguish the direct interactions from the indirect ones in a227

network. For example, in a three-neuron network that Y →W → X, the indirect interaction from Y to X may possibly be228

mis-inferred as a direct interaction via pairwise causality measures especially when the activity signals are continuous-valued as229

shown in Fig. S11B. However, this type of mistake does not happen in our case of pulse-output signals as explained below.230

Here we take TDCC as an example to explain the underlying reason of successful reconstruction.231

Denote232

δpY →X = p(xn = 1|yn−m = 1)− p(xn = 1|yn−m = 0)233

as the increment of probability of generating a pulse output by node X at time step n induced by a pulse-output signal of node234

Y at an earlier time step n−m. From Eq. 6, we have235

C(X, Y ; m) = δpY →X

√
py − p2

y

px − p2
x

. [36]236

Denote S1 and S2 as the coupling strength from node Y to node W and from node W to node X, respectively. Then the237

increment δpY →X is a function of S1 and S2 and the Taylor expansion of δpY →X with respect to S1 and S2 has the following238

form239

δpY →X = α0 + α1S1 + α2S2 + α3S2
1 + α4S1S2 + α5S2

2 + o(S1S2), [37]240

where the symbol “o” stands for higher order terms. Here we assume that the only feedforward inputs are independent Poisson241

inputs for all three neurons as external inputs. If S1 = 0 or S2 = 0, then the nodes X and Y are independent from the242

connection structure, i.e.,243

δpY →X

∣∣∣
S1=0

= 0 and δpY →X

∣∣∣
S2=0

= 0.244

Therefore, we have α0 = α1 = α2 = α3 = α5 = 0 in Eq. 37 and δpY →X = α4S1S2 + o(S1S2). Similarly, the Taylor expansion245

of δpY →W and δpW →X with respect to S1 and S2 have the form246

δpY →W = β1S1 + O(S2
1) and δpW →X = β2S2 + O(S2

2),247

which are numerically verified in Fig. S8C. Thus, we have248

δpY →X = O(δpY →W · δpW →X), [38]249

as shown in Fig. S8A (bottom right inset) for examples of 3-neuron HH networks. From Eqs. 36 and 38, we have250

Zhong-qi K. Tian, Kai Chen, Songting Li, David W. McLaughlin, and Douglas Zhou 11 of 27



C(X, Y ; m) = O (C(W, Y ; m) · C(X, W ; m)) [39]251

as shown in Fig. S8A. Because the influence of a single input pulse signal is often small (e.g., in the HH neural network with252

physiologically realistic coupling strengths corresponding to excitatory postsynaptic potential less than 1 mV, the absolute253

value of the increment |δp| is less than 0.01 measured from simulation, as shown in Fig. S8C), the causal value C(X, Y ; m)254

from indirect interaction will be significantly smaller than C(W, Y ; m) or C(X, W ; m) from the direct interaction. Therefore,255

the causal values of d-conn and id-conn pairs are distinguishable when performing pairwise inference on pulse-output signals.256

Confounder issues lead to another category of spuriously inferred causal connections. As illustrated in the top-left inset257

of Fig. S8B, we analyze a three-neuron system with a connectivity structure as Y ←W → X. In this system, the coupling258

strength from neuron W to neuron Y (or X) is denoted as S1 (or S2). The causal effect, δpY →X (or δpX→Y ), aligns with the259

form detailed in Eq. 37 when expressed through a Taylor expansion. We obtain the following relations analogous to those260

given by Eqs. 38 and 39:261

262

δpY →X = O(δpW →Y · δpW →X),
C(X, Y ; m) = O(C(Y, W ; m) · C(X, W ; m)).

263

The numerical verification of these relations is provided in the bottom-right inset of Fig. S8B. Consequently, our approach can264

adeptly differentiate the causal effects by confounders from those due to direct coupling.265

In an N -neuron network, the inter-neuronal interaction is represented by the recurrent connectivity matrix S = (Sij), and266

all neurons receive independent feedforward Poisson drive as background inputs. The causal relation, δpi→j , from neuron i to267

neuron j, can be expressed as:268

δpi→j = β1Sji + β2(S2)ji + β3(SS⊤)ji + h.o.t., [40]269

where the first term signifies the contribution arising from the direct connection, the second term encapsulates the cumulative270

contribution from all second-order indirect connections linking neurons i and j (illustrated in the inset of Fig. S8A), and the271

third term represents the contributions from all confounder motifs (demonstrated in the inset of Fig. S8B). Analogous to Eq.272

37, this equation articulates all possible causality contributions from neuron i to neuron j via Taylor expansions. A successful273

reconstruction mandates that the magnitude of the first term for d-conn pairs surpasses the summative influence of the second274

and third terms for id-conn pairs. This requirement is closely related to the effectiveness of our framework, outlined in the275

discussion section of the main text.276

Furthermore, we also shows the relation between δpY →X and ∆pm, which is introduced in derivations of our theorems.277

δpY →X = p (xn = 1, yn−m = 1)
p (yn−m = 1) − p (xn = 1, yn−m = 0)

p (yn−m = 0)

= p (xn = 1, yn−m = 1)
p (yn−m = 1) + p (xn = 1, yn−m = 1)

p (yn−m = 0) − p (xn = 1, yn−m = 1)
p (yn−m = 0) − p (xn = 1, yn−m = 0)

p (yn−m = 0)

=
[

p (xn = 1, yn−m = 1)
p (xn = 1) p (yn−m = 1) − 1

]
· p (xn = 1)

p (yn−m = 0)

= ∆pm ·
px

1− py

≈ ∆pm · px

[41]278

We have shown that δpY →X is proportional to S in Fig. S8C, and ∆pm is insensitive to ∆t in Fig. S2. Therefore, ∆pm is279

asymptotically proportional to O(S), and δpY →X is asymptotically proportional to O(S ·∆t),280

∆pm ∝ O (S) , δpY →X ∝ O (S ·∆t) . [42]281

4. Detailed HH model282

A. Hodgkin-Huxley (HH) neural network model of only excitatory population. The dynamics of the ith neuron of an HH network283

is governed by284

C
dVi

dt
= −GNam3

i hi(Vi − VNa)−GKn4
i (Vi − VK)−GL(Vi − VL) + I input

i , [43]285

dzi

dt
= (1− zi)αz(Vi)− ziβz(Vi), for z = m, h, n, [44]286

where C is the cell membrane capacitance; Vi is the membrane potential (voltage); mi, hi, and ni are gating variables; VNa, VK,287

and VL are the reversal potentials for the sodium, potassium, and leak currents, respectively; and GNa, GK, and GL are the288

corresponding maximum conductances. The rate variables αz and βz are defined as (2)289
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αm(V ) = 0.1V + 4
1− exp(−0.1V − 4) , βm(V ) = 4 exp

(
−(V + 65)

18

)
,

αh(V ) = 0.07 exp
(
−(V + 65)

20

)
, βh(V ) = 1

1 + exp(−3.5− 0.1V ) ,

αn(V ) = 0.01V + 0.55
1− exp(−0.1V − 5.5) , βn(V ) = 0.125 exp

(
−(V + 65)

80

)
.

290

The input current I input
i has the form I input

i = −Gi(t)(Vi − VE), with VE being the excitatory reversal potential. The291

conductance Gi(t) is defined as292

Gi(t) = f
∑

l

H(t− sil) +
∑

j

AijS
∑

l

H(t− τjl),293

with sil being the lth spike time of the external Poisson input with strength f and rate ν. The spike-induced conductance294

change H(t) is defined by (2)295

H(t) = σdσr

σd − σr

[
exp
(
− t

σd

)
− exp

(
− t

σr

)]
Θ(t), [45]296

where σd and σr are the decay and rise time scale, respectively, and Θ(·) is the Heaviside function. A = (Aij) is the adjacency297

matrix with Aij = 1 indicating a direct connection from neuron j to neuron i and Aij = 0 indicating no connection from298

neuron j to neuron i, S is the coupling strength, and τjl is the lth spike time of the jth neuron.299

We take the parameters as in Ref. (2) that C = 1 µF·cm−2, VNa = 50 mV, VK = −77 mV, VL = −54.387 mV,300

GNa = 120 mS·cm−2, GK = 36 mS·cm−2, GL = 0.3 mS·cm−2, and VE = 0 mV. We set synaptic time constants as σr = 0.5301

ms and σd = 3.0 ms. For simplicity, we set the Poisson input parameters as f = 0.1 mS·cm−2 and ν = 100 Hz, unless302

indicated otherwise. However, the conclusions shown in this work hold for a wide range of parameters corresponding to different303

dynamical regimes.304

When the voltage Vi reaches the firing threshold, Vth = −50 mV, we say the ith neuron generates a spike at this time.305

Instantaneously, all of its postsynaptic neurons receive this spike and the affected change of conductance follows Eq. 45.306

B. HH neural network model of both excitatory and inhibitory populations. For the HH network consisting of both excitatory307

and inhibitory neurons, the dynamics of the ith HH neuron is also governed by Eqs. 43 and 44. But the input current I input
i is308

given by309

I input
i = −GE

i (t)(Vi − VE)−GI
i (t)(Vi − VI),310

where GE
i (t) and GI

i (t) are excitatory and inhibitory conductances, respectively, VE and VI are the corresponding reversal311

potentials. The conductances are defined as312

GE
i (t) = f

∑
l

H(t− sil; σE
d , σE

r ) +
∑

j

AijSE
∑

l

H(t− τjl; σE
d , σE

r ),

GI
i (t) =

∑
j

AijSI
∑

l

H(t− τjl; σI
d, σI

r ),
313

where H(·) is given in Eq. 45 with parameters σE
d (σI

d) and σE
r (σI

r ) being the decay and rise time scale of excitation (inhibition);314

SE and SI are the excitatory and inhibitory coupling strengths, respectively. The parameters are set as VE = 0 mV, VI = −80315

mV, σE
r = 0.5 ms, σE

d = 3.0 ms, σI
r = 0.5 ms, σI

d = 7.0 ms. The HH neural network here and the previous one with only316

excitatory population are efficiently simulated by an adaptive exponential time differencing algorithm introduced in Ref. (3).317

Zhong-qi K. Tian, Kai Chen, Songting Li, David W. McLaughlin, and Douglas Zhou 13 of 27



Properties of pulse-output signals318
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Fig. S1. Relation between ACF and sampling time bin ∆t of pulse-output signals. (A) ACF curves as a function of time delay with ∆t = 0.25 (blue), 0.5 (green), and 1 ms
(red), respectively. Note that ACF with 0 time delay is not plotted. (B), ACF values at a fixed time delay 20 ms plotted as a function of ∆t. The black line is a linear fit with
R2 = 0.985 which is consistent with the derivation in Eq. 10. When ∆t is sufficiently small, the magnitude of auto-correlation of binary time series is also small, indicating that
the binary time series become almost whitened.
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Fig. S2. ∆pm is insensitive to sampling resolution ∆t. The result is obtained from neuron Y to neuron X in an HH network of 10 excitatory neurons. The HH network is
randomly connected with connection probability 0.25, and there is a unidirectional connection from Y to X with coupling strength S. The parameters are set as a fixed time
delay 3 ms and S = 0.02 mS·cm−2.
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Fig. S3. Causal values as a function of (A) order k and (B) order l which are computed from neuron Y and neuron X in the same HH network as in Fig. S2. A large
∆t = 1.5ms is applied in the computation of causal values. Other parameters are set as m = 2 (time delay is 3 ms), f = 0.1 mS·cm−2, ν = 300 Hz, S = 0.02
mS·cm−2, and l = 1 in (A) and k = 1 in (B). The causal values in both (A) and (B) are all significantly greater than those of randomly surrogate time series with the p-value
p < 0.05. The relations among the four causality measures revealed by Theorems 1-4 in the main text still holds when choosing the orders of k = 28 in (A) or l = 28 in (B),

in both cases the event
∥∥x

(k+1)
n+1

∥∥
0

≥ 2 or
∥∥y

(l)
n+1−m

∥∥
0

≥ 2 occurs with a frequency more than 44%. This result indicates that the assumption of
∥∥x

(k+1)
n+1

∥∥
0

≤ 1 and∥∥y
(l)
n+1−m

∥∥
0

≤ 1 is a sufficient but not necessary condition in the derivation of the quantitative relation between TE and TDMI.
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Fig. S4. Dependence of causal values on the parameter of time delay, with different choice of order l. In (A)-(D), order l is equal to 1, 5, 10 and 20, respectively. The gray
dashed curve is the significance level of causality for id-conn pairs. Data in (A) are the same as in Fig. 3C in the main text and are reproduced here for comparison with other
cases. Note that there is a well-separated second peak in (A) around 9.5 ms, which results from the incomplete estimation of causal information due to the choice of small
value of l (e.g., l = 1). The second peak gradually disappears as l increases. On the one hand, for different choice of l, the mathematical relations in Theorem 1-4 in the main
text always hold. On the other hand, order l = 1 is sufficient for the inference of a correct direction of causal connection, since the causal values of d-conn pairs is significantly
distinguishable from those of id-conn pairs. The colors and other parameters are set the same as those in Fig. 3C in the main text.
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Consistency among causality measures across different dynamical regimes319
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Fig. S5. Relative error of causal values with different external Poisson input parameters f and ν. The result is obtained from neuron Y to neuron X in the same HH network in

Fig. S2. Here, the relative error is computed by max{ΣTDCC2,2ΣTDMI,GC,TE}−min{ΣTDCC2,2ΣTDMI,GC,TE}
max{ΣTDCC2,2ΣTDMI,GC,TE}

and small relative error indicates that mathematical relations revealed

by Theorems 1-4 in the main text hold for a wide range of Poisson input parameters. Other parameters are set as ∆t = 0.5 ms, k = l = 1, S = 0.01 mS·cm−2, and
m = 6 (time delay is 3 ms).
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Reconstruction of structure connectivity for asynchronous state320
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Fig. S6. Performance of the causality measures in an HH network in the asynchronous state. The network is composed of 100 excitatory neurons randomly connected with
probability 0.25, which is the same network as in Fig. 4 in the main text. (A) Raster plot of neuronal firing indicating that the network is in an asynchronous state. (B) ROC
curves of the full HH network with AUC = 1. (C) ROC curves of an HH subnetwork of 20 neurons with AUC = 1. The green curve represents the summation of squared TDCC
C(X, Y ; m), the red curve represents twice of the summation of TDMI I(X, Y ; m), the orange curve stands for GC GY →X (k, l; m), and the blue curve stands for twice
of TE TY →X (k, l; m). The ROC curves for TDCC, TDMI, GC, and TE overlap with each other. The parameters are set as ∆t = 0.5 ms, k = l = 1, S = 0.02 mS·cm−2,
and m = 6 (time delay is 3 ms). Unless otherwise specified, the length of spike-train data used for reconstruction analysis here and all following results is 107 ms.
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Fig. S7. Performance of causality measures in HH networks with heterogeneous structural connectivity. The networks are composed of 100 excitatory neurons with the entry
Aij in the adjacency matrix following the Bernoulli distribution (probability of 0.25 being 1). For those d-conn pairs, e.g., Aij = 1, the corresponding coupling strength from
neuron j to neuron i is sampled from various distributions, including four model distributions, (A) normal, (B) uniform, (C) exponential, (D) log-normal distributions, and (E)
distribution fitted from electrophysiological data (4). (A-E) The AUC values of HH networks are 1.0, 0.97, 0.92, 1.0, and 0.90, respectively. Note that all ROC curves virtually
overlap with each other, which again is consistent with Theorems 1-4 in the main text. The colors are the same as those in Fig. S6. Inset: The corresponding histograms of the
coupling strength, S, among all d-conn pairs in networks. The parameters are set as ∆t = 0.5 ms, k = l = 1.
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Dependence of δp on S321

0.5 1.0
C(W,Y ;m) · C(X,W ;m) ×10 5

2

3

4

5

6

7

C
(X
,Y

;m
)

×10 5A

0.5 1.0
C(Y,W ;m) · C(X,W ;m) ×10 5

2

3

4

5

6

7

C
(X
,Y

;m
)

×10 5B

0 1 2 3
S (mS · cm−2) ×10 2

0

1

2

3

δp

×10 3C

0.5 1.0
δpY→W · δpW→X ×10 5

2.5

5.0

7.5

δp
Y
→
X

×10 5

0.5 1.0
δpW→Y · δpW→X ×10 5

2.5

5.0

7.5

δp
Y
→
X

×10 5

0.01 0.02 0.03

S (mS · cm−2)

Y X

Y

W X

Y

W X

Fig. S8. The relations of TDCC between the id-conn pair and d-conn pairs, and the dependence of the increment δp of the d-conn pair on the coupling strength S. (A-B):
C(X, Y, m) of the id-conn (Y, X) pair is linearly correlated with the product of C(W, Y ; m) and C(X, W ; m) of d-conn (Y, W ) and (W, X) pairs in a 3-neuron HH
network with structural connectivity given in the inset (top left) in (A). C(X, Y, m) of the id-conn (Y, X) pair is linearly correlated with the product of C(Y, W ; m) and
C(X, W ; m) of d-conn (W, Y ) and (W, X) pairs in a 3-neuron network with structural connectivity given in the inset (top left) in (B). The black line is a linear fit with
R2 = 0.928 in (A) and R2 = 0.913 in (B). The Inset (bottom right) in (A): δpY →X of the id-conn (Y, X) pair is linearly correlated with the product of δpY →W and
δpW →X of d-conn (Y, W ) and (W, X) pairs. The black line is a linear fit with R2 = 0.930. The Inset (bottom right) in (B): δpY →X of the id-conn (Y, X) pair is linearly
correlated with the product of δpW →Y and δpW →X of d-conn (W, Y ) and (W, X) pairs. The black line is a linear fit with R2 = 0.917. (C) δpY →X is proportional to the
coupling strength S in a 2-neuron HH network with structural connectivity given in the inset (top left). The black line is a linear fit with R2 = 0.992. The colormap in (A-B)
(including insets) indicates the magnitude of coupling strength S defined by the colorbar in (A). The parameters are set as ∆t = 0.5 ms, and m = 6 (time delay is 3 ms).
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Reconstruction of structure connectivity with experimental data322
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Fig. S9. Reconstruction of structural connectivity by the assumption of log-normal distribution of causal values for experimental spike data across different visual stimuli,
including (A) drifting gratings, (B) static gratings, (C) natural scenes, and (D) natural movie. (Top panel): The distribution of |∆pm| values in the network composed
by the observed neurons in experiments. The little peaks around 100 are corresponding to the concentration of ∆pm = −1, which indicates no joint firing events, i.e.
p(xn = 1, yn−m = 1) = 0. (Middle panel): The distribution of TE values in the corresponding network. The blue and red curves are the computed and fitted distributions,
respectively. (Bottom panel): The distribution of fitted TE values from d-conn (red) and id-conn (blue) pairs which are obtained from the fitting of curves in middle panel. The
black vertical line represents the optimal inference threshold (the total error of inference reaches the minimum) for each stimulus condition. Using this threshold, we infer the
binary adjacency matrix for each of four different stimuli conditions. Note, for each of the four stimuli cases, the green curves capture the inconsistent pairs (i.e., the inferences
across stimulus conditions align in less than 3 conditions) in the binary reconstruction matrix, which are located at the overlap region of the two fitted distributions. We use
the experimental spike data (sections id 715093703 at https://allensdk.readthedocs.io/) with signal-to-noise ratio greater than 4 and firing rate greater than 0.08 Hz. The
parameters are set as k = 1, l = 5, ∆t = 1 ms, and m = 1 (time delay is 1 ms). The length of spike-train data used for calculation is 1.9 × 106 ms for (A) drifting gratings,
1.5 × 106 ms for (B) static gratings, 1.5 × 106 ms for (C) natural scenes, 1.8 × 106 ms for (D) natural movie.
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Verify the log-normal distributed assumption for causality measures323
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Fig. S10. Reconstruction of structural connectivity by the assumption of log-normal distribution of causal values for an HH network of 100 excitatory neurons. The entry Aij in
the adjacency matrix follows a Bernoulli distribution with probability of 0.25 being 1. For the d-conn pairs, e.g., Aij = 1, the corresponding coupling strength from neuron j to
neuron i is sampled from a log-normal distribution. The parameters are the same as those in Fig. S6 except that the Poisson input rate is ν = 90 Hz in (A), ν = 100 Hz in
(B), ν = 110 Hz in (C), and ν = 120 Hz in (D). The colors are the same as those in Fig. S9.
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Continuous-valued signals breaks the mathematical relations among four causality measures324
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Fig. S11. The mathematical relations among the causality measures in Theorems 1-4 in the main text do not hold for continuous-valued voltage time series in the same HH
network in Fig. S3. (A) TDCC, TDMI, GC, and TE as a function of order l computed from continuous-valued voltage time series. The order l for TE is cut off at l = 10 due to
the exponential increase of data requirement. (B) TDCC and TDMI as a function of time delay with positive (negative) delay corresponding to the calculation of causal values
from Y to X (from X to Y ). The black line represents the noise level, which is obtained as the largest value of TDCC (TDMI) after shuffling the time series and computing
TDCC (TDMI) between the shuffled signals for 100 times. A bidirectional connection between X and Y will be incorrectly inferred by TDMI due to the strong self-correlation of
the continuous-valued voltage time series. The parameters are set as order k = l and m = 1 (time delay is 0.5 ms) in (A), and S = 0.02 mS·cm−2, ∆t = 0.5 ms in (A)
and (B).
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Reconstruction of structure connectivity in more general situations325
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Fig. S12. Performance of the causality measures in an HH network of 100 excitatory neurons in the nearly synchronous state. (Top panel): Results using the original spike train.
(Bottom panel): Results using the spike train from desynchronized sampling that only samples the pulse-output signals in asynchronous time intervals. (A, D): Raster plot of the
neuronal firing. (B, E): The distribution of causal values of each pair of neurons in the whole network. (C, F ): ROC curves of the HH network with AUC = 0.88 (upper) and
AUC = 0.99 (lower). The ROC curves for TDCC, TDMI, GC, and TE nearly overlap. The colors and parameters are the same as those in Fig. S6, except that the coupling
strength S = 0.028 mS·cm−2.
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Fig. S13. AUC as a function of percentage of deleted data in the spike train of the HH network in Fig. S12A. 78 % of the spike data are deleted by performing desynchronized
sampling (i.e., only spike data in asynchronous time intervals are kept) in Fig. S12D.
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Fig. S14. Performance of the causality measures in an HH network of 100 excitatory neurons receiving correlated external Poisson inputs. The correlation coefficient of
the Poisson input to each neuron is 0.30. (Top panel): Results using the original spike train. (Bottom panel): Results using the spike train from desynchronized sampling.
(A, D): Raster plot of the neuronal firing. (B, E): The distribution of causal values of each pair of neurons in the whole network. (C, F ): ROC curves of the HH network with
AUC = 0.73 (upper) and AUC = 1.00 (lower). The ROC curves for TDCC, TDMI, GC, and TE nearly overlap. The colors and parameters are the same as those in Fig. S6.
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Fig. S15. Performance of the causality measures in (A-C) I&F, (D-F ) Izhikevich, (G-I) FitzHugh-Nagumo, (J-L) Morris-Lecar network of 100 excitotary neurons randomly
connected with probability 0.25. (A, D, G, J) Raster plot of the neuronal firing. (B, E, H, K ) The distribution of causal values of each pair of neurons in the whole network.
(C, F, I, L) ROC curves of the corresponding network with AUC equaling (C) 1.0, (F ) 0.99, (I) 1.0, (L) 0.98. The parameters are set as (A-C) f = 1.6 mV, ν = 0.6 kHz,
S = 0.5 mV, ∆t = 0.5 ms, m = 2 (time delay is 1 ms), and orders k = l = 1, (D-F ) f = 2.2 mV, ν = 0.3 kHz, S = 0.6 mV, ∆t = 0.5 ms, m = 6 (time delay is
3 ms), and orders k = l = 1, (G-I) f = 0.5, ν = 0.1 kHz, S = 0.05, ∆t = 0.5 ms, m = 6 (time delay is 3 ms), and orders k = l = 1, (J-L) f = 100 µA · cm−2,
ν = 0.4 kHz, S = 30 µA · cm−2, ∆t = 0.5 ms, m = 6 (time delay is 3 ms), and orders k = l = 1. The ROC curves for TDCC, TDMI, GC, and TE in (C, F, I, L) overlap
with each other. The colors are the same as those in Fig. S6.
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Fig. S16. Performance of the causality measures in an HH network of 80 excitatory and 20 inhibitory neurons. The neurons are randomly connected with probability 0.25. (Top
panel): Results using the original spike train. (Bottom panel): Results using the spike train from desynchronized sampling. (A, D) Raster plot of the neuronal firing. The blue
and red dots indicate the excitatory and inhibitory neurons, respectively. (B, E) The distribution of causal values of each pair of neurons with the presynaptic neuron being
excitatory. (C, F ) The distribution of causal values of each pair of neurons with the presynaptic neuron being inhibitory. The colors and parameters are the same as those in Fig.
S6. The AUC values for (B, C, E, F) are 0.96, 0.71, 1, and 0.99, respectively. The coupling strength is SE = 0.02 mS·cm−2 and SI = 0.08 mS·cm−2. The correlation
coefficient of the Poisson input to each neuron is 0.15.
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Fig. S17. AUC values of causality measures in network reconstruction for E-I balanced leaky integrate-and-fire networks with different network sizes and levels of connection
density. (A) AUC values as a function of network size N with fixed in-degree K = 40. (B) AUC values as a function of network connection density with fixed network size
N = 40000. The parameters are set as k = l = 1, ∆t = 0.1 ms, and m = 1 (time delay is 0.1 ms). Note that all four curves in (A) and (B) virtually overlap with one
another. The colors and other parameters are set the same as those in Fig. 3C in the main text. The length of spike-train data used for calculation is 106 ms.
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Fig. S18. The causal values and the results of network reconstruction in the large E-I balanced network with fixed connection probability 0.01. (A) Another version of
mathematical relations among four causality measures in the strong inhibition scenario. The distributions of causal values are drawn from neuronal pairs with ∆pm ≈ −1 in a
4000-neuron network (K = 40). All other network parameters are the same as those in Fig. S17. (B) AUC values of causality measures in network reconstructions for E-I
balanced LIF networks with different network sizes with fixed connection density, p = K/N = 0.01. Note that all four curves in (B) virtually overlap with one another. (C-F )
The distributions of |∆pm| for networks with different sizes: (C) N = 4000, K = 40, (D) N = 8000, K = 80, (E) N = 16000, K = 160, (F ) N = 40000, K = 400.
It’s important to notice that as the network size increases, the proportion of |∆pm| > 1 values in the distributions decreases. Thus, for realistically large E-I balanced network
with reasonable sparsity, the relations in Theorem 1 to 4 are still valid. Other parameters of causality measures are set as ∆t = 0.1 ms, k = l = 1, and m = 1 (time delay is
0.1 ms).

A

10 8 10 7 10 6 10 5 10 4

causal value
0

0.5

1

pr
ob

ab
ilit

y 
de

ns
ity

B
TDCC2

2 TDMI
GC
2TE

0 0.5 1
false positive rate

0

0.5

1

tru
e 

po
sit

iv
e 

ra
te

C

TDCC2

2 TDMI
GC
2TE

0 100 200 3000

50

100

ne
ur

on
 in

de
x

0 100 200 300
t (ms)

0

50

100

ne
ur

on
 in

de
x

Fig. S19. Performance of the causality measures in an HH network based on spike-train data with a low sampling rate. The network is composed of 100 excitatory neurons
randomly connected with a probability of 0.25. (A) (Upper panel) Raster plot of neuronal firing with high sampling rate. (Lower panel) Raster plot of neuronal firing of the same
network with a low sampling rate, e.g., 50 Hz. (B) The distribution of causal values of all neuron pairs in the network using spike-train data with a low sampling rate. (C) ROC
curves of the full HH network with AUC = 0.97. The parameters are set as k = l = 1, ∆t = 20 ms, and m = 1 (time delay is 20 ms). The colors and other parameters are
set the same as those in Fig. 3C in the main text. The length of spike-train data used for calculation is 108 ms.
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Fig. S20. Performance of causality measures of our reconstruction method in 100-neuron excitatory HH networks with a wide range of parameters and dynamical regimes. (A)
Reconstructions of HH networks with different coupling strengths and the average number of recorded spikes per neuron. (B) Reconstructions of HH networks with different
input correlations. The input correlation indicates the ratio of common Poisson spike train in the feedforward drive to the network, with 0 for independent inputs and 1 for the
case that all neurons receive the same Poisson spike train as the feedforward drive. (C) Reconstructions of HH networks with different connection densities. In (B-C), blue lines
represent AUC values for the pulse-output signals after the downsampling process, and orange lines represent AUC values for raw pulse-output signals. The parameters are set
as k = l = 1, ∆t = 0.5 ms for (A) and (C) and k = l = 5, ∆t = 0.5 ms for (B).
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